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Supplementary Figure 1 
 
(A) Predicted truncated protein of PrimPolΔ/Δ. The truncated protein lacks both, the 
catalytic archaeo-eukaryotic primase domains (underlined in black) as well as the 
Zn-fingers (underlined in red) required for repriming. 
 
(B) qPCR for the PrimPol RNA of WT and PrimPolΔ/Δ MEF’s. cDNA was synthesized 
using random hexamers. Normalization was performed to GAPDH RNA levels (**** 
indicates p-value < 0.0001). 
 
 
Supplementary Figure 2. Lymphoid development, proliferative capacity and 
CSR competence of PrimPolΔ/Δ B cells 
 
(A) Percentage of progenitor B cell subsets in the bone marrow of wild type (WT) 
and PrimPolΔ/Δ mice. A representative example of one of two experiments is shown. 
Note, no intergenotypic differences were found in the absolute number of bone 
marrow cells.  
 
(B) Percentage of progenitor T cell subsets in the thymus of wild type (WT) and 
PrimPolΔ/Δ mice. A representative example of one of two experiments is shown. Note, 
no intergenotypic differences were found in the absolute number of thymocytes. 
 
(C) Percentage of mature lymphoid subsets in the spleen of wild type (WT) and 
PrimPolΔ/Δ mice. Again, no intergenotypic differences were observed in the absolute 
number of splenocytes. 
 
(D) CSR to IgG3 and IgG1 was induced in naïve splenic B cells of wild type and 
PrimPolΔ/Δ mice by exposure to LPS and LPS/rIL-4, respectively. The frequencies of 
class switched IgG1 and IgG3 expressing B cells after four days of culture are 
depicted. PrimPol appears dispensable in determining the CSR efficiency. 
 
(E) The proliferative capacity of PrimPolΔ/Δ and wild type control B cells was 
determined by comparing the CFSE dilution profiles.  Absence of PrimPol had no 
impact on cell proliferation. 
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Supplementary Figure 3.  
 
(A) The mutation load is provided as a frequency of mutated sequences harbouring 
a defined number of mutations. The genotypes are indicated. The number of mice 
analysed is indicated in Figure 2D.  
  
(B) Absolute mutation frequency of individual nucleotide substitutions. Values are 
expressed as the percentage of defined nucleotide substitutions (X>Y) in relation to 
all nucleotides (X) in the mutated sequences derived from a specific genotype p-
value = 0,0019.  
 
(C & D) G>C over C>G bias observed in the JH4 intronic region of hypermutated Ig 
genes from B cells isolated from C57Bl/6 mice. Data adapted from (8,40), p-values: 
0,003 and 0,0009, respectively. 
 
 
 
Supplementary Figure 4. Spearman’s rank correlations of CENPU RNA and 
CASP3 RNA with all point mutations. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 5: Spearman’s rank correlations of APOBEC3B RNA with 
mutations. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 6: Spearman’s rank correlations of PRIMPOL RNA with 
number of mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 7: Spearman’s rank correlations of POLH RNA with number 
of mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 8: Spearman’s rank correlations of POLI RNA with number 
of mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 9: Spearman’s rank correlations of POLK RNA with number 
of mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 10: Spearman’s rank correlations of REV1 RNA with 
number of mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
Supplementary Figure 11: Spearman’s rank correlations of APOBEC3B and 
PRIMPOL RNA with number of TpC mutations per tumour. P-value (p) and Rho (r) 
are indicated. 
 
Supplementary Figure 12: Spearman’s rank correlations of POLH and POLI RNA 
with number of TpC mutations per tumour. P-value (p) and Rho (r) are indicated. 
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Supplementary Figure 13: Spearman’s rank correlations of POLK and REV1 RNA 
with number of TpC mutations per tumour. P-value (p) and Rho (r) are indicated. 
 
 
Supplementary Figure 14: Analysis of mutation C mutation -1 nucleotide 
composition.  
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